Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 405
1.
Redox Biol ; 73: 103139, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38696898

In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA ß-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.

2.
PLoS Pathog ; 20(5): e1012228, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739679

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.

3.
Mater Today Bio ; 26: 101051, 2024 Jun.
Article En | MEDLINE | ID: mdl-38633867

Commonly, articular osteochondral tissue exists significant differences in physiological architecture, mechanical function, and biological microenvironment. However, the development of biomimetic scaffolds incorporating upper cartilage, middle tidemark-like, and lower subchondral bone layers for precise articular osteochondral repair remains elusive. This study proposed here a novel strategy to construct the trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment of both mechanical and biological factors. The cartilage-specific microenvironment was achieved through the grafting of kartogenin (KGN) into gelatin via p-hydroxyphenylpropionic acid (HPA)-based enzyme crosslinking reaction as the upper cartilage layer. The bone-specific microenvironment was achieved through the grafting of atorvastatin (AT) into gelatin via dual-crosslinked network of both HP-based enzyme crosslinking and glycidyl methacrylate (GMA)-based photo-crosslinking reactions as the lower subchondral bone layer. The introduction of tidemark-like middle layer is conducive to the formation of well-defined cartilage-bone integrated architecture. The in vitro experiments demonstrated the significant mechanical difference of three layers, successful grafting of drugs, good cytocompatibility and tissue-specific induced function. The results of in vivo experiments also confirmed the mechanical difference of the trilayered bionic scaffold and the ability of inducing osteogenesis and chondrogenesis. Furthermore, the articular osteochondral defects were successfully repaired using the trilayered biomimetic hydrogel scaffolds by the activation of endogenous recovery, which offers a promising alternative for future clinical treatment.

4.
Biotechnol J ; 19(4): e2300714, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622793

Natural bone tissue features a complex mechanical environment, with cells responding to diverse mechanical stimuli, including fluid shear stress (FSS) and hydrostatic pressure (HP). However, current in vitro experiments commonly employ a singular mechanical stimulus to simulate the mechanical environment in vivo. The understanding of the combined effects and mechanisms of multiple mechanical stimuli remains limited. Hence, this study constructed a mechanical stimulation device capable of simultaneously applying FSS and HP to cells. This study investigated the impact of FSS and HP on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and examined the distinctions and interactions between the two mechanisms. The results demonstrated that both FSS and HP individually enhanced the osteogenic differentiation of BMSCs, with a more pronounced effect observed through their combined application. BMSCs responded to external FSS and HP stimulation through the integrin-cytoskeleton and Piezo1 ion channel respectively. This led to the activation of downstream biochemical signals, resulting in the dephosphorylation and nuclear translocation of the intracellular transcription factors Yes Associated Protein 1 (YAP1) and nuclear factor of activated T cells 2 (NFAT2). Activated YAP1 could bind to NFAT2 to enhance transcriptional activity, thereby promoting osteogenic differentiation of BMSCs more effectively. This study highlights the significance of composite mechanical stimulation in BMSCs' osteogenic differentiation, offering guidance for establishing a complex mechanical environment for in vitro functional bone tissue construction.


Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Hydrostatic Pressure , Cell Differentiation/physiology , Transcription Factors/metabolism , Cells, Cultured , Bone Marrow Cells
6.
Viruses ; 16(3)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38543789

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic swine coronavirus that causes diarrhea and high mortality in piglets, resulting in significant economic losses within the global swine industry. Nonstructural protein 3 (Nsp3) is the largest in coronavirus, playing critical roles in viral replication, such as the processing of polyproteins and the formation of replication-transcription complexes (RTCs). In this study, three monoclonal antibodies (mAbs), 7G4, 5A3, and 2D7, targeting PEDV Nsp3 were successfully generated, and three distinct linear B-cell epitopes were identified within these mAbs by using Western blotting analysis with 24 truncations of Nsp3. The epitope against 7G4 was located on amino acids 31-TISQDLLDVE-40, the epitope against 5A3 was found on amino acids 141-LGIVDDPAMG-150, and the epitope against 2D7 was situated on amino acids 282-FYDAAMAIDG-291. Intriguingly, the epitope 31-TISQDLLDVE-40 recognized by the mAb 7G4 appears to be a critical B-cell linear epitope due to its high antigenic index and exposed location on the surface of Nsp3 protein. In addition, bioinformatics analysis unveiled that these three epitopes were highly conserved in most genotypes of PEDV. These findings present the first characterization of three novel linear B-cell epitopes in the Nsp3 protein of PEDV and provide potential tools of mAbs for identifying host proteins that may facilitate viral infection.


Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Epitopes, B-Lymphocyte , Antibodies, Monoclonal , Porcine epidemic diarrhea virus/genetics , Blotting, Western , Amino Acids
7.
Genes (Basel) ; 15(2)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38397239

(1) Background: Copy number variation (CNV) is a critical component of genome structural variation and has garnered significant attention. High-throughput screening of the KCNJ15 gene has revealed a correlation between the CNV region and the growth traits of goats. We aimed to identify the CNV of the KCNJ15 gene in five goat breeds and analyze its association with growth characteristics. (2) Methods: We utilized 706 goats from five breeds: Guizhou black goat (GZB), Guizhou white goat (GZW), Bohuai goat (BH), Huai goat (HH), and Taihang goat (TH). To evaluate the number of copies of the KCNJ15 gene using qPCR, we analyzed the correlation between the CNV and growth characteristics and then used a universal linear model. The findings revealed variations in the distribution of different copy number types among the different goat breeds. (3) Results: Association analysis revealed a positive influence of the CNV in the KCNJ15 gene on goat growth. In GZB, individuals with duplication types exhibited superior performance in terms of cannon bone circumference (p < 0.05). In HH, individuals with duplication types exhibited superior performance in terms of body slanting length (p < 0.05). Conversely, normal TH demonstrated better body height and body weight (p < 0.05), while in GZW, when CN = 3, it performed better than other types in terms of body weight and chest circumference (p < 0.05). However, in BH, it had no significant effect on growth traits. (4) Conclusions: We confirmed that the CNV in the KCNJ15 gene significantly influences the growth characteristics of four distinct goat breeds. The correlation between KCNJ15 gene CNVs and goat growth traits offers valuable insights to breeders, enabling them to employ precise and efficient breeding methods that enhance livestock welfare, productivity, and overall economic benefits in the industry.


Goats , Potassium Channels, Inwardly Rectifying , Animals , Body Weight/genetics , DNA Copy Number Variations/genetics , Gene Dosage , Goats/genetics , Goats/growth & development , Phenotype , Potassium Channels, Inwardly Rectifying/genetics
8.
Cell Rep ; 43(2): 113786, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38363684

Type 1 innate lymphoid cells (ILC1s) possess adaptive immune features, which confer antigen-specific memory responses against haptens and viruses. However, the transcriptional regulation of memory ILC1 responses is currently not known. We show that retinoic acid receptor-related orphan receptor alpha (RORα) has high expression in memory ILC1s in murine contact hypersensitivity (CHS) models. RORα deficiency diminishes ILC1-mediated CHS responses significantly but has no effect on memory T cell-mediated CHS responses. During sensitization, RORα promotes sensitized-ILC1 expansion by suppressing expression of cell-cycle repressors in draining lymph nodes. RORα programs gene-expression patterns related to cell survival and is required for the long-term maintenance of memory ILC1s in the liver. Our findings reveal RORα to be a key transcriptional factor for sensitized-ILC1 expansion and long-term maintenance of memory ILC1s.


Immunity, Innate , Lymphocytes , Animals , Mice , Cell Survival , Liver , Lymph Nodes , Transcription Factors
9.
mBio ; 15(3): e0313623, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38358252

Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE: Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.


Penaeidae , Virus Diseases , White spot syndrome virus 1 , Animals , Interferons/metabolism , White spot syndrome virus 1/physiology , Ammonia/metabolism , Heat-Shock Response
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 262-268, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38387932

OBJECTIVE: To compare the efficacy and clinical value of high-throughput sequencing (HTS) and Sanger sequencing in detecting ABL kinase domain mutations in patients with chronic myeloid leukemia (CML). METHODS: A total of 198 samples of 147 CML patients from July 2017 to March 2021 in Henan Cancer Hospital were collected and underwent high-throughput sequencing and Sanger sequencing to detect the mutations in ABL kinase domain, and the relevant clinical data were collected for comparative analysis. RESULTS: The proportion of total mutations and ≥2 mutations detected by high-throughput sequencing were significantly higher than those detected by Sanger sequencing (P =0.01; P =0.046). ≥2 mutations were detected in 22 cases, of which 5 cases (22.7%) had compound mutations. High-throughput sequencing can detect low level mutations that cannot be detected by Sanger sequencing. In 198 samples, 25 (12.6%) were low level mutations, 33 (16.7%) were high level mutations and 10 (5.1%) were mixed high and low level mutations. In the analysis of related clinical factors, the total mutation rate and the low level mutation rate in the optimal period, failure period and warning period were gradually increased (total mutation rate, P =0.016; low level mutation rate, P =0.005). The mutation rate of the samples with additional chromosomal abnormalities was also significantly increased (P =0.009). The mutation rate of patients who received first- and second-line treatment was significantly lower than that of patients who received third- or higher-line treatment (P =0.006). Analysis based on variant allele frequency (VAF) of the mutation site was helpful to visually evaluate the clonal evolution status of TKI-resistance CML cells. CONCLUSION: High-throughput sequencing is more sensitive and accurate than Sanger sequencing in mutation detection, which is helpful to accurately and visually evaluate TKI treatment response and optimize treatment strategy for CML.


Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl/genetics , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , High-Throughput Nucleotide Sequencing
11.
J Am Chem Soc ; 145(50): 27273-27281, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38065568

Atomically precise Au25 nanoclusters have garnered significant interest in the field of heterogeneous catalysis due to their remarkable activity and selectivity. However, for the extensively studied reaction of low-temperature CO oxidation, their performance has not been competitive compared to other known gold nanocatalysts. To address this, we deposited Au25(SR)18 (R = CH2CH2Ph) nanoclusters onto a manganese oxide support (Au25/MnO2), resulting in a very stable and highly active catalyst. By optimizing the pretreatment temperature, we were able to significantly enhance the performance of the Au25/MnO2 catalyst, which outperformed most other gold catalysts. Impressively, 100% conversion of CO was achieved at temperatures as low as -50 °C, with 50% conversion being reached below -70 °C. Furthermore, the existence of ligands could also influence the negative apparent activation energy observed at intermediate temperatures. Analysis using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD) techniques indicated that the Au25 nanoclusters remained stable on the catalyst surface even after pretreatment at high temperatures. In-situ modulation excitation spectroscopy (MES) spectra also confirmed that the Au cluster was the active site for CO oxidation, highlighting the potential of atomically precise Au25 nanoclusters as primary active sites at very low temperatures.

12.
Biochem Biophys Rep ; 36: 101583, 2023 Dec.
Article En | MEDLINE | ID: mdl-38053620

Angiogenesis is critical for wound healing and tissue repair. Umbilical cord mesenchymal stem cells (UCMSCs)-conditioned medium has certain actions to promote angiogenesis, and is expected for wound healing and tissue repair. However, recent studies showed that the pro-angiogenic efficacy of unprocessed MSCs-conditioned medium is low, and insufficient for tissue repair. Autophagy is a process for protein recycling and a contributor for cell exocrine, which may enhance pro-angiogenic efficacy of the conditioned medium by stimulating cytokine release from UCMSCs. Therefore, in this study we attempted to obtain enhanced autophagy in UCMSCs using different concentrations of rapamycin and compared pro-angiogenic functions of the conditioned media. The in vitro data showed that although 100 nM-10 µM rapamycin all could induce autophagy in UCMSCs, 100 nM was the best dose to optimize the angiogenic effect of the conditioned medium. The in vivo data also showed that pro-angiogenic effect of the optimized conditioned medium was more obvious than that of the control conditioned medium (0 nM group) in the injected matrigel plaques. Further, the expressions of VEGF, FGF-2, MMP-9, PDGF-α and PDGF-ß were markedly increased in UCMSCs treated with 100 nM rapamycin. In conclusion, appropriately enhancing autophagy of UCMSC can improve pro-angiogenic efficacy of the conditioned medium, which may optimize therapeutic applications of UCMSCs-conditioned medium in wound healing and tissue repair.

14.
Nat Commun ; 14(1): 7885, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38036495

Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the "open" water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.


Gases , Plants , Vapor Pressure , Atmospheric Pressure , Carbon
15.
Mol Cell Biochem ; 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37922111

Cardiovascular diseases, including myocardial infarction (MI), constitute the leading cause of morbidity and mortality worldwide. Protein-aggregate deposition is a hallmark of aging and neurodegeneration. Our previous study reported that aggregation is strikingly elevated in hearts of hypertensive and aged mice; however, no prior study has addressed MI effects on aggregation in heart or brain. Here, we present novel data on heart and brain aggregation in mice following experimental MI, induced by left coronary artery (LCA) ligation. Infarcted and peri-infarcted heart tissue, and whole cerebra, were isolated from mice at sacrifice, 7 days following LCA ligation. Sham-MI mice (identical surgery without ligation) served as controls. We purified detergent-insoluble aggregates from these tissues, and quantified key protein constituents by high-resolution mass spectrometry (LC-MS/MS). Infarct heart tissue had 2.5- to 10-fold more aggregates than non-infarct or sham-MI heart tissue (each P = 0.001). Protein constituents from MI cerebral aggregates overlapped substantially with those from human Alzheimer's disease brain. Prior injection of mice with mesenchymal stem cell (MSC) exosomes, shown to limit infarct size after LCA ligation, reduced cardiac aggregation ~ 60%, and attenuated markers of endoplasmic reticulum (ER) stress in heart and brain (GRP78, ATF6, P-PERK) by 50-75%. MI also elevated aggregate constituents enriched in Alzheimer's disease (AD) aggregates, such as proteasomal subunits, heat-shock proteins, complement C3, clusterin/ApoJ, and other apolipoproteins. These data provide novel evidence that aggregation is elevated in mouse hearts and brains after myocardial ischemia, leading to cognitive impairment resembling AD, but can be attenuated by exosomes or drug (CDN1163) interventions that oppose ER stress.

16.
BMJ Open ; 13(11): e078051, 2023 11 02.
Article En | MEDLINE | ID: mdl-37918934

OBJECTIVE: To identify profiles of nurses' perceived professional benefits as well as their predictors. DESIGN: Cross-sectional study. SETTING: The study was carried out online in China. METHODS: From 6 July to 27 July 2022, a total of 1309 registered nurses participated in the survey by convenient sampling. We collected the Nurses' Perceived Professional Benefits Questionnaire and demographic data. Using latent profile analysis (LPA), subgroups of nurses' perceived professional benefits were identified. Moreover, univariate and multinomial logistic regression analyses were conducted to find the factors that were linked with the profiles. RESULTS: The survey was validly completed by 1309 nurses, with a 92.9% effective return rate. The findings of the LPA demonstrated three unique profiles: low-perceived professional benefits (11.8%), moderate-perceived professional benefits (57.1%) and high-perceived professional benefits (31.1%). There was a correlation between marital status, the number of night shifts per month and leadership role. CONCLUSIONS: According to our research, registered nurses have three unique professional benefit profiles. In order to sustain the nursing workforce, despite the fact that nurses get a high level of professional benefits, interventions are necessary to increase nurses' perception of their professional value.


Burnout, Professional , Nurses , Nursing Staff, Hospital , Nursing Staff , Humans , Cross-Sectional Studies , China , Surveys and Questionnaires , Job Satisfaction
17.
Alzheimers Res Ther ; 15(1): 164, 2023 10 03.
Article En | MEDLINE | ID: mdl-37789414

BACKGROUND: Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid ß (Aß). Microglia (MG) play a crucial role in uptake of Aß fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aß phagocytosis remains unstudied. METHODS: We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-ß-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aß phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS: HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aß phagocytosis model, we identified 130 functional-validated Aß phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aß phagocytosis. Interestingly, we identified 14 human Aß phagocytic AD MG DEGs which represented impaired MG Aß phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aß phagocytosis. CONCLUSIONS: We established molecular signatures for a compensatory response of Aß phagocytosis activation in human and mouse AD MG and impaired Aß phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aß phagocytosis in AD.


Alzheimer Disease , Hyperhomocysteinemia , Mice , Animals , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/metabolism , Methylation , Phagocytosis , Disease Models, Animal , Mice, Transgenic
18.
Angew Chem Int Ed Engl ; 62(46): e202306791, 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37779352

The electrocatalytic sulfur reduction reaction (SRR) would allow the production of renewable high-capacity rechargeable lithium-sulfur (Li-S) batteries using sustainable and nontoxic elemental sulfur as a cathode material, but its slow reaction rate causes a serious shuttle effect and dramatically reduces the capacity. We found that a catalyst composed of Pd nanoparticles supported by ordered mesoporous carbon (Pd/OMC) had a high reaction rate in the SRR, and a Li-S battery assembled with this catalyst had a low shuttle constant of 0.031 h-1 and a high-rate performance with a specific capacity of 1527 mAh g-1 at 0.1 C which is close to the theoretical value. The high activity of Pd/OMC with a d-orbital vacancy of 0.87 e was predicted from a volcano relationship between the d charge for the metal and the adsorption activation entropy and reaction rate for the SRR by examining Pd, Au, Pt, Rh, and Ru transition-metal nanocatalysts. The strategy of using a single electronic structure descriptor to design high-efficiency SRR catalysts has suggested a way to produce practical Li-S batteries.

19.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2413-2420, 2023 Sep.
Article En | MEDLINE | ID: mdl-37899107

Dissolved organic carbon (DOC) plays a crucial role in the assessment of greenhouse gas emission and carbon balance in peatlands. However, limited research has been conducted on the seasonal variations and properties of soil water DOC content at different depths in the permafrost peatlands of the Great Hing'an Mountains. In this study, we analyzed the seasonal patterns of soil water DOC contents (surface, 10 cm, 20 cm, 30 cm, 40 cm, and permafrost layer) the permafrost peatlands of the Great Hing'an Mountains (Tuqiang Forestry Bureau), and investigated the influencing factors, such as electrical conductivity, dissolved oxygen, HCO3- concentration, pH value, oxidation-reduction potential, and CO2 content. The stability of DOC was assessed by using UV-Vis spectrum. There were significant seasonal dynamics of DOC content in soil water, with higher contents in autumn and lower content in summer, ranging from 55.7 to 188.1 mg·L-1. There were significant differences in DOC content among different soil depths, with the highest levels detected in the permafrost layer. The DOC content showed a significantly positive correlation with pH value and electrical conductivity, while showed a significantly negative correlation with redox potential, HCO3- concentration, and dissolved oxygen content. Additionally, there was a significantly positive correlation between DOC and CO2 contents. The dissolved CO2 content in soil water increased with soil depth, with the highest content observed in the permafrost layer. Results of spectral analysis showed higher aromaticity in autumn compared to summer, indicating greater stability of DOC during the autumn season. Our results clarified the seasonal variations of soil water DOC in permafrost peatlands of the Great Hing'an Mountains and could provide important data to understand the carbon cycling in the region.


Permafrost , Soil , Soil/chemistry , Seasons , Permafrost/chemistry , Dissolved Organic Matter , Water/analysis , Carbon Dioxide/analysis , Carbon/analysis , Oxygen
20.
Colloids Surf B Biointerfaces ; 231: 113537, 2023 Nov.
Article En | MEDLINE | ID: mdl-37776773

Periosteum, the thin layer covering adjacent to bone containing specific architecture, is important for functional bone regeneration and remodeling. Synthetic periosteum investigated presently lacks the resemblance of natural periosteum, suffering from poor mechanical strength and cell attachment. Here, we report a newly-developed biomimetic film to function as synthetic periosteum. Based on poly(ε-caprolactone) (PCL), where surface wettability of the synthetic periosteum is enhanced by microtantalum (mTa) particle blending and after a cold drawing process, further obtains topographical anisotropy without any involvement of solvent. This new blend shows mechanical enhancement over pure PCL, with yield stress and elastic strain approaching the natural periosteum. A distinct degradation mechanism is proposed for the blend, and by seeding with mouse calvarial preosteoblasts, cell proliferation is promoted on surface of the drawn PCL but delayed on the mTa-blended PCL. However, cell mineralization is accelerated on the mTa-blended surface. This is less on the drawn PCL. The synergistical integration of cellular proliferation, alignment and osteogenic enhancement suggest that the cold drawn PCL/Ta blend has unique potential for developing into a synthetic periosteum and other tissue-engineering products.


Periosteum , Polyesters , Animals , Mice , Tissue Engineering , Osteogenesis , Tissue Scaffolds
...